equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
Na física, a mecânica quântica relativista (RQM) é qualquer formulação covariante de Poincaré de mecânica quântica. Esta teoria é aplicável a partículas massivas[1] que se propagam em todas as velocidades até as comparáveis à velocidade da luz c e podem acomodar partículas sem massa.[2][3] A teoria tem aplicação em física de alta energia,[4] física de partículas e física de aceleradores,[5][6] bem como física atômica, química[7] e física da matéria condensada.[8][9]
Operador de velocidade
O operador de velocidade Schrödinger/Pauli pode ser definido para uma partícula maciça usando a definição clássica p = m v, e substituindo os operadores quânticos da maneira usual:[10]
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
que possui autovalores que possuem qualquer valor. Na RQM, a teoria de Dirac, é:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
que deve ter autovalores entre ± c. Mais antecedentes teóricos podem ser visto na transformação de Foldy-Wouthuysen.[11][12][13][14]
A mecânica clássica de Koopman-von Neumann ou mecânica KvN, é uma descrição da mecânica clássica em termos do espaço de Hilbert, introduzida por Bernard Koopman e John von Neumann em 1931 e 1932.[1][2][3] Koopman e von Neumann demonstraram que um espaço de Hilbert de funções de onda quadráticas integráveis[4] e complexas pode ser definido de uma forma que a mecânica clássica posa ser formulada como uma teoria operativa semelhante à mecânica quântica.
Analogia quântica
Sendo explicitamente baseado na linguagem espacial de Hilbert, a mecânica clássica de KvN adota muitas técnicas da mecânica quântica, por exemplo, técnicas de diagrama[5] e perturbação, bem como métodos integrais funcionais.[6][7][8] A abordagem KvN é muito geral e foi estendida a sistemas dissipativos,[9] mecânica relativista[10] e teoria clássica de campos.[11][12]
A Teoria quântica dos campos locais, ou Sistema axiomático Haag-Kastler para a teoria quântica dos campos, ou ainda Teoria quântica dos campos algébrica foi proposta pelos físicos Rudolf Haag e Daniel Kastler em 1964.
A teoria é uma aplicação local da física quântica numa C*-álgebra. Os axiomas desta teoria são definidos em termos algébricos dados por todo conjunto aberto num espaço de Minkowski, e mapeados entre eles.
Definição
Permitindo que Mink seja a categoria de subconjuntos abertos de um espaço de Minkowski M com função inclusão como morfismo. É dado um functor contravariante de Mink para uC*alg, a categoria de C*álgebras unitais, já que todo morfismo em Mink se mapeia para um monomorfismo num uC*alg.
O grupo de Poincaré age continuamente no Mink. Ali existe o produto fibrado desta ação, que é continua na norma operacional da Covariância de Lorentz: .
O espaço de Minkowski possui uma estrutura casual. Logo se um conjunto aberto V se encontra no complemento casual de um conjunto aberto U, então a imagem do mapeamento
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
e
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Comuta se é o complemento casual do conjunto aberto U, então é um isomorfismo.
Um estado com respeito a uma C*-álgebra é uma Função linear positiva com norma unitária. Se nós possuirmos um estado sobre , nós podemos obter o traço parcial e conseguir estados associados com para cada conjunto aberto.
Comentários
Postar um comentário